Statistical weakness in Spritz against VMPC-R:
in search for the RC4 replacement

Bartosz Zoltak

www.vmpcfunction.com
bzoltak@vmpcfunction.com

Abstract. We found a statistical weakness in the Spritz algorithm designed by Ronald L. Rivest
and Jacob C. N. Schuldt. For N = 8: Prob(output(z) = output(z + 2)) = 1/N + 0.000498. The
bias becomes statistically significant (for N = 8) after observing about 22! outputs. Analogous
bias occurs for N = 16. We propose an algorithm (VMPC-R) which for N = 8 produced 2% (31
million times more) outputs which remained undistinguishable from random in the same battery of
tests. Supported by a series of additional statistical tests and security analyses we present VMPC-R
as an algorithm we hope can be considered a worthwhile replacement for RC4.

Keywords: PRNG; CSPRNG; Spritz; RC4; VMPC-R; stream cipher; distinguishing attack

1 Introduction

RC4 is a popular and one of the simplest symmetric encryption algorithms. Over the years nu-
merous attacks against it have been published. In 2014 Ronald L. Rivest, the author of RC4,
along with Jacob C. N. Schuldt published their new proposition of an RC4-like algorithm -
Spritz [1]. In this paper we report a statistical weakness in Spritz and propose another algo-
rithm - VMPC-R [3], which appears to produce output of much higher statistical quality.

The authors of Spritz carried out a substantial amount of statistical tests on their algorithm
and also on a large number of other candidate designs which they rejected an route to their best
choice that became Spritz. This is the exact research approach which we applied in 2010-2013
when we were designing VMPC-R; see [3] for more details.

In this paper we use the distant-equalities statistical test (which we used in the VMPC-R
research process and published in 2013 in [3]) to show a statistical weakness in the output gen-
erated by Spritz: probability that output(x) = output(x + 2) is biased.

We found the distant-equalities test to be extremely sensitive and extremely hard to pass.
Our finalist - VMPC-R - which was the first one among about 250 candidates to pass the test
- passed all the further statistical tests we subjected it to. In 2014 we published another paper
[4] in which we showed weaknesses in 20 other RC4-like algorithms - all using only the distant-
equalities test. Spritz is a significant improvement over RC4 but it still fails this test.

In 2010-2013 we carried out an experiment to find our proposition for the RC4 replacement.
VMPC-R is the result of that project. In the approach we took when designing VMPC-R we
rejected all candidates which revealed any bias for any word size even in relatively huge (like
2468 for N = 8) sample sizes. We accepted only a candidate which performed flawlessly even
for very small word sizes with N € {2,3,4,5,6,7,8,16,...}). On the contrary - according to [1],
Spritz was accepted despite showing biases for small word sizes; the biases are not specified,
only reported to require 28! outputs for N = 256.

VMPC-R was proposed by Bartosz Zoltak in 2013 in [3]. In contrast to a 3-bit (N = 8) RC4,
which failed the distant-equalities test with only about 100,000 outputs, and to 3-bit Spritz
which failed at around 4 million (22!?) outputs, the 3-bit variant of VMPC-R passed the test
with over 122 trillion (26-®) outputs which still remained undistinguishable from random. We
terminated the test only because of the limitations of computational power. We speculate (judg-
ing on the performance for N < 8) that VMPC-R would remain bias-free in the N = 8 test even
after exhausting the complete internal state space. This would mean increasing the sample size
28-fold to 2°16,

To the best of our knowledge - VMPC-R produces (by far) the highest quality output (in
terms of statistical properties) among all the RC4-like ciphers we know of. It also remains the
simplest RC4-like algorithm (that we were able to come up with) which is able to pass the
distant-equalities test with samples not smaller than those we analysed. VMPC-R. performed
well in a number of further statistical tests and it did not show any other security problems - as
far as we were able to analyse it. We believe that VMPC-R has the attributes to be considered
a good replacement for RC4.

2 The distant-equalities statistical test

The test measures the numbers of occurrences of 8 different Events in the algorithm’s output.
Informally - Event k£ occurs when two words of the keystream are equal and the distance between
them is k. We ran the test for k € {1,2,...,8} More specifically: Let z; denote the i-th output
word of the algorithm. Then:

Event k: z; = z;4p for k € {1,2,...,8}

In a random keystream each Event would occur with probability p = 1/N, where N is the
algorithm’s word size (the algorithm operates on Zy). The expected number of occurrences of
each Event in n samples (E = np) and the standard deviation (o = /np(1 —p)) are given
according to the binomial distribution. The test counts the numbers of occurrences of Events
1,2,...,8 and compares them with the model F = np using o as the measure of deviation (the
test calculates d = (f — F) /o, where f is the measured number), which is a common statistical
practice. For large samples the binomial distribution can be approximated with the normal
distribution, where e.g. the probability of exceeding the expected value by 3¢ is 2785, by 5o
27207 by To: 27385,

3 RC4, Spritz and VMPC-R in the distant-equalities test

All the three algorithms were tested using a key scheduling algorithm which ensures uni-
form distribution of the internal state. We analysed scaled down variants of the algorithms
(for N < 256) which magnified any non-random behavior the algorithms carried in their design.
The approach to analyse RC4-like ciphers for smaller word sizes was applied e.g. in [16], [17],
[18] and also in the Spritz paper [1].

3.1 Specification of the algorithms

Variable w used by Spritz can take on any value that is relatively prime with N. We tested the
algorithm for all possible values of w ({1,3,5,7} for N = 8 and {1,3,5,7,9,11,13,15} for N = 16)
and found no effect of the choice of w for the performance in the test (and also for the cycle
lengths discussed in Section 5.4).

Table 1. Variables used by RC4 and Spritz

N : word size (the algorithm operates on Zy)

i,7,k, z,w : integer variables
+ denotes addition modulo N

S : N-element permutation of integers {0, 1, ...

N -1}

Table 2. RC4

repeat steps 1-4:
1. i=i+1
2. j=7+ 5[]
3. swap S[i| with S[j]
4. output S[S[i] + S[j]]

Table 3. Spritz

repeat steps 1-6:

1. i=i4w
j =k + S[j + SIi]
k=1i4+k+ S[j]
swap S[i] with S[j]
2= 8[j + S[i + S|z + k]]]
output z

S ok

Table 4. VMPC-R

N : word size (the algorithm operates on Zy);

P, S : N-element permutations of integers {0, 1, ...

a,b,c,d, e, f,n : integer variables
+ denotes addition modulo NV

N —1}

repeat steps 1-10:
1. a= Pla+ c+ S[n]]

2. b=P[b+ad
3. ¢=Plc+1}]
4. d=S[d+ f+ Pln]]
5. e=Sle+d]
6. f=5[f+¢€]

7. output S[S[S[c+d]] + 1]

8. swap P[n] with P[f]
9. swap S[n| with S[d]
10. n=n+1

3.2 Interpretation of the results

Table 5. RC4, Spritz and VMPC-R distant-equalities test results for N=8

Algorithm|Samples|Event 1|Event 2|Event 3|Event 4|Event 5|Event 6|Event 7|Event 8
RC4 270 4.74 —9.13 | 3.55 | —2.75 | 4.66 | 0.33 | 0.61 | —0.77
Spritz 276 0.74 13.82 | —2.36 | —1.44 | —0.06 | 0.55 | —0.09 | —0.02
VMPC-R [276® —1.46 | —0.27 | —=1.25 | 1.20 1.39 | —0.65 | 0.56 | —0.88

Table 6. RC4, Spritz and VMPC-R distant-equalities test results for N=16

Algorithm |Samples|Event 1|Event 2|Event 3|Event 4|Event 5|Event 6|Event 7|Event 8
RC4 2350 27.82 [—47.12] 4.00 | 10.52 | 21.18 | 6.00 | 8.31 2.04
Spritz 210 —1.24 | 7.12 0.68 | —0.24 | —0.88 [0.20 | —0.08 | 1.08
VMPC-R [275% {0.00 -199 | 082 | 046 | —1.20 | —0.79 | —1.75 | —1.06

Tables 5 and 6 present by how many standard deviations (o) the measured numbers of Events
1,2,...,8 were different from their expected values, i.e. the tables report d = (f — E)/o. We are
hoping to get the absolute values of the deviations under 3 or less strictly - under 4.

3.3 RCA4 results

The sample size of the N = 8 test (22°) was limited by the cycle of length 955,496 that RC4
falls into. This refrained the deviations to develop into greater sizes. The test for NV = 16, which
did not meet the end of a cycle, revealed how severely biased the RC4 output is in the test.

In the N = 8 test RC4 needed only about 100,000 outputs to exceed —30 in Event 2 (z; = z;12).
In the full sample of 2%° outputs the Event 2 deviation grew to over —9¢. Deviations in Event
1 (2; = zi41) of 4.740, Event 3 (z; = z;13) of 3.550 and Event 5 (z; = z;45) of 4.660 were also
beyond acceptance.

Greater sample size of 239 for N = 16 revealed extreme deviations in all but the last Event
with peaks of 27.82¢0 in Event 1 and —47.120 in Event 2.

While there is no guarantee that the same deviations would hold for other word sizes it is
apparent that the generic construction of RC4 shows significant flaws in the test. We would
rather expect proper pseudo-random behavior regardless of the selected word size.

3.4 Spritz and VMPC-R results

Spritz performs well in all but Event 2. This means that the probability that two Spritz outputs
separated by one discarded output are equal is biased:

Prob(output(z) = output(z +2)) > 1/N

The result occurred for N = 8 and N = 16. We did not test it for other word sizes. However
having tested hundreds of RC4-like algorithms with the test and having regularly observed rep-
etitions of the biases for different word sizes we expect that in the full N = 256 version of Spritz
the bias would also stand.

For N = 8 we observed 10,559,801 occurrences of Event 2 instead of the expected 10,517,885
in 84,143,080 samples (the longest Spritz cycle for N = 8) which means a measured probability
of 0.125498 instead of 0.125. While for N = 8 we have o = 3033 we get d = (10,559,801 -
10,517,885) / 3033 = 13.82 meaning that Spritz exceeded the expected number by 13.820 rather
than the tolerable 30 or less strictly 4. This translates to 3,969,190 or 22! samples which are
required to reveal the bias (which we identify by exceeding 30) for N = 8.

For N = 16: 63,500,272,687 occurrences of Event 2 rather than the expected 63,498,535,500
in 1,015,976,568,000 samples were observed which means a measured probability of 0.06250171
instead of 0.0625. o = 243987 and d = (63,500,272,687 - 63,498,535,500) / 243987 = 7.12. So
Spritz exceeded the expected number by 7.120. This means that 180,343,952,000 or 2374 samples
are required to reveal the bias (by exceeding 30) for N = 16.

VMPC-R performed levels-of-magnitude better in the test. For N = 8 it produced 122 tril-
lion 2468 outputs without revealing any bias. This is 224 or 31 million times more unbiased
outputs of VMPC-R than the amount (22!) which is enough to reveal the bias in Spritz. For
N = 16 we terminated the test after 2465 samples due to limitations in computational power
without finding any bias.

The authors of Spritz state in [1] and we agree that a proper algorithm should produce quality
output regardless of the selected word size. We would like to point out that despite making
that claim the authors of Spritz accepted their final candidate having found a bias for small
word sizes. This is contradictive. The bias is reported to be minor (extrapolated to requiring
281 outputs to distinguish the stream from random for N = 256). The bias however remains. It
is not said which statistical property of the generated keystream reveals the bias. This may be
the same bias we discuss in this paper or it may be another one.

4 VMPC one-way function: used in VMPC-R and used in Spritz

VMPC one-way function (Variably Modified Permutation Composition) was proposed by Bar-
tosz Zoltak at FSE 2004 [2]. It transforms an N-element permutation S into another N-element
permutation V:

Viz] = VM PC[S[z]] = S[Mi[S[Ma[S[2]]]]

My, M, are any (non-secret) permutations such that M;[x] # Ms[z] for z € {0,1,...., N —1}. An
example VMPC function is V[z] = P[P[P|z]] + 1], where + denotes addition modulo N. The
VMPC function shows to be one-way. Applying it as a final transformation of the permutation
(S) before releasing the output provides an additional layer of security against state-recovery
attacks. The function was applied in VMPC-R in 2013 [3] in step 7: S[S[S[c + d]] + 1] and also
in the original VMPC stream cipher published at FSE 2004 [2].

Step 5 of the Spritz algorithm:
z = S[j+ S[i + S[z + K]]]

is the VMPC function with parameters: © = z + k; Ma[z] = = + i; Mi[z] = = + j. Clearly the
parameters z,k, 7,7 can change in each iteration. Also on average in one in N cases, when it
happens that ¢ = j, the Spritz transformation does not fit the definition of the VMPC func-
tion. This however does not change the fact that step 5 of the Spritz algorithm conceptually
is the VMPC one-way function. We state this as a good thing because the function, appearing
to be one-way, naturally fits the design of RC4-like ciphers and is an easy to use resource to
strengthen the algorithm at a low cost. The function (i.e. in the V[z] = S[S[S[z]] + 1] form) can
be implemented with three elementary 1-cycle mov processor instructions per one output.

The M; permutations corrupt the cycle structure of S in such a way that deriving any informa-
tion about S from V requires guessing a number of elements of S (e.g. 34 guessed elements is
the estimate for 256-element permutations). Any occurrence of M;[x] = Ms[x] (against the def-
inition) would weaken the function’s one-way properties. A function V{z| = S[M;[S[M:1[S[z]]]]]
would be trivial to invert for any value of M;. The original estimate appears to still stand that
inverting the function for 256-element permutations requires an average effort of 2260,

In strict terms one-way functions have not been proved to exist. The existence of one would
imply P # NP. The VMPC function with no polynomial-time algorithm for inverting known
can be regarded as believed-to-be-one-way.

5 VMPC-R

The name VMPC-R consists of two parts: VMPC stands for the name of the one-way function
(summarized in Section 4) employed in step 7, and R stands for random. Specification of the
algorithm can be found in Table 4.

5.1 The research process leading to VMPC-R

Our objective was to find an algorithm as simple as possible but to pass the distant-equalities
test with considerable sample sizes even for small word sizes. Before reaching the final version
we examined over 250 RC4-like candidates which all failed. We found only one algorithm which
was able to pass the test. The variations we tested came from combining the following factors:

1. The number of permutations (1 or 2) and variables (2-7).

2. The way the variables were updated by the permutations.

3. The way the variables feedbacked each other.

4. The way the output word was computed from the variables and the permutations.
5. The way the variables controlled the swap operations on the permutations.

The purpose of the first stage was to find one candidate to carry out the extended testing
on. Each version first underwent the test for N = 8. If the candidate failed, it was rejected.

Initially we tested approximately 50 designs which used a single permutation and different num-
bers of variables. Some versions used two swap operations controlled by different combinations
of variables. We observed huge gaps separating each of the candidates from the random model
and we were finally unable to build an algorithm even close to passing the test using a single
permutation.

We concluded that an RC4-like cipher must use two permutations to pass the distant-equalities
test. For the sake of simplicity we limited the search space to one swap operation per each per-
mutation per one output. Adding the second permutation significantly raised the complexity of
the algorithm and broadened the number of design variations.

Adding the second permutation did not make the search an instant success. Instead it sig-
nificantly slowed it down due to the large number of candidates and the fact that they generally
performed much better in the test and it took more time to find the deviations. The majority of
our two-permutation candidates used 5 variables. From over 160 different combinations of them
- none could pass the test with much over 1 billion outputs for N = 8.

As the final step we chose the combinations of factors 2 and 3 which appeared to work best
and analysed a 7-variable scheme in 36 configurations of different variables taking part in the
output computing step (factor 4) and in the two swap operations (factor 5). Out of them 20
quickly failed. Out of the remaining 16 we found a few which showed promising results. From
them we chose the one which performed best. With the majority of other candidates struggling
to pass the 1 billion outputs mark (for N = 8), the final version passed the test with over 122
trillion (246-%) undistinguishable from random outputs. This is how VMPC-R was born.

5.2 The extended battery of tests on VMPC-R

The final candidate underwent a series of additional statistical tests. Apart from the distant-
equalities test, we measured several other parameters which were commonly exploited in
distinguishing attacks against similar ciphers. Let N denote the algorithm’s word size, z; the
i-th output word; n is the internal variable of VMPC-R. The battery included the following
measurements:

8 Events in the distant-equalities test: z; = z;4 for k € {1,2,...,8}
— N numbers of occurrences of each possible output value z;

— N2 numbers of occurrences of each possible pair [n, z;]

— N? numbers of occurrences of each possible pair [z;, z;11]

— N3 numbers of occurrences of each possible combination [n, z;, 2;11]

5.3 VMPC-R results

To probe the algorithm’s output we used over 100 computers and generated a total of over 2
quadrillion (10%%-3 = 251) outputs. Table 7 presents the sample sizes we tested for different word
sizes. Table 8 shows the results of the distant-equalities test. We do not quote the results of the
remaining tests from the battery due to their large capacity. We found no bias in any of the
tests.

Table 7. VMPC-R distant-equalities test sample sizes

Word size Number of output words tested
N=2 (1-bit) 504 = 1027 = 290

N=3 48 687 = 10*7 = 2156

N=4 (2-bit) 7.8 million = 105 = 2229
N=5 365.8 million = 1056 = 2284
N=6 113.8 billion = 10*** = 2367
N=7 1.9 trillion = 10'23 = 2408
N=8 (3-bit) 122 trillion = 10! = 2468
N=16 (4-bit) 103 trillion = 10'* = 2%6-°
N=32 (5-bit) 114 trillion = 10*** = 2%6-7
N=64 (6-bit) 121 trillion = 10! = 268
N=128 (7-bit) |163 trillion = 10'*2 = 2472
N=256 (8-bit) |1.5 quadrillion = 10'5-2 = 250

Table 8. VMPC-R distant-equalities test results

N |Event 1|Event 2|Event 3|Event 4|Event 5|Event 6|Event 7|Event 8
2 0.00 | —0.03 | 0.33 | —0.03 | —0.03 | —0.48 | 0.10 | —0.39
3 —0.28 | 0.05 0.52 0.47 | —1.48 | 149 | —0.30 | —0.47
4 —0.10 | —0.28 | —0.03 | —1.27 | 0.24 2.26 0.38 0.08
5 —-0.69 | 133 | —0.29 | —1.18 | —0.68 | 1.67 1.28 | —1.01
6 0.72 | —0.14 | —0.80 | —0.74 | 0.49 0.40 0.09 | —0.73
7 0.27 0.34 | —0.19 | 1.01 —-0.62 | 0.44 2.01 0.46
8 —1.46 | —0.27 | —1.25 | 1.20 1.39 | —0.65 | 0.56 | —0.88
16 0.00 | —1.99 | 0.82 0.46 | —1.20 | —0.79 | —1.75 | —1.06
32 1.64 —0.46 0.55 —1.18 | —=0.29 | —0.31 | —1.45 0.46
64 | —0.66 | 0.25 0.88 | —0.77 | 0.37 0.46 0.51 0.73
128 0.83 | —1.22 | 0.15 0.33 0.70 | —0.24 | 0.72 | —0.07
256/ 0.00 | —0.24 | —0.78 | 1.34 1.47 | —1.23 | —0.14 | 0.24

In the first test we forced the algorithm to work in a single-bit mode (N = 2). Even with that
extent of simplification the algorithm passed the tests. Here the algorithm’s state generated
twelve 42 output-long cycles. As an exception from the other word sizes (where the longest cycle
usually comprised the majority of the state space) for N = 2 we averaged the results for each
of the observed 12 cycles. The averages (found in the table) as well as the results for each cycle
separately were well within acceptable random deviations. This test comprised 98% of the state
space (504 of the 512 possible values of the state).

In the tests for N € {3,4,5,6} we limited the analyses to the size of the longest observed
cycle. This was equivalent to examining 62% 82%, 33% and 78% of the complete state space for
the respective word sizes. None of the measured probabilities showed any non-random behavior
in the tests. We also probed several of the remaining shorter cycles (not reported in the table)
and found no anomalies there, either.

For N = 7 with 1.9 trillion (24%®) outputs tested (about 10% of the state space) we did not
encounter a repeated cycle and we observed proper pseudorandom behavior in the tests.

N = 8 (3-bit words) was the first of the big size tests which required significant computa-
tional power. It is the smallest size which offers state space large enough (10'°%) not to hamper
the scale of the test with cycles yet it is small enough to expose possible deviations vividly. We
tested over 122 trillion (26-®) outputs and they showed to be undistinguishable from the random
model in the tests.

We continued the test with over 100 trillion-word samples for N € {16,32,64,128} and did
not find any non-random anomalies in the algorithm’s output in the tests.

For N = 258 (8-bit) we increased the sample size to over 1.5 quadrillion outputs (2°04) as
N = 256 is the actual word size for possible practical applications. The results here in all the
tests were also well within the acceptable deviations from the random model.

Summarizing the experiments - we did not manage to find any non-random patterns in over
2 quadrillion outputs of VMPC-R in any of the statistical tests performed for any of the tested
word sizes. In the sections to follow we try to investigate some other aspects of the algorithm’s
cryptographic security.

5.4 Cycle lengths of VMPC-R and Spritz

We assess the probability of VMPC-R repeating a cycle to be negligibly low for N = 256. The
size of the internal state is determined by the size of the P and S permutations and the 7
variables a,b,c,d, e, f,n to be N> N7. For N = 256 it is over 101930 or 23424 possible values.
Because the n variable is increased by 1 modulo N in each iteration the internal state would
be changed in N iterations before it could repeat. In these iterations P and S would undergo
N swap operations indexed by n, a and f while a,b,c,d, e, f would be updated N times. The
probability that the variables would repeat their values after these N iterations should not be
significantly different from N!=2. N=6 or 273416 for N = 256. In our statistical tests for N = 8
(2516 possible values of the internal state) we did not encounter a single case of a repeated

cycle in the sample of 246% outputs. In Table 9 we show three longest cycles we observed for
N € {3,4,5,6}.

Table 9. Cycle lengths observed in VMPC-R

Word size | Total state space| 3 longest cycles

N =3 78 732 48 687; 6 945; 6 126

N=4 9 437 184 7 766 992; 833 100; 369 056

N=5 1 125 000 000 365 826 825; 219 688 515; 155 601 705

N=6 145 118 822 400 | 113 795 459 358; 10 758 771 978; 9 768 433 476

Table 10. Cycle lengths observed in Spritz

Word size | Total state space| 5 longest cycles
N =38 165 150 720 84 143 080; 14 349 456; 12 020 440; 9 566 304; 6 405 880

In Spritz the state space of its PRNG function is determined by permutation S and variables
i,7,k,z to be N!- N* For N = 256 it is over 10°'6 or 21716,

The longest cycle of Spritz for N = 8 is 84 143 080 while for VMPC-R (and N = 8) it is
so long that we did not encounter the end of the cycle in a sample of 2468 outputs. This however
should not be considered any weakness of Spritz while this is only the consequence of a much
larger internal state of VMPC-R, (23424) compared to 2176 of Spritz (for N = 256) which mostly
results from the fact that VMPC-R uses two permutations while Spritz - a single one.

5.5 First outputs of VMPC-R

Statistical properties of the first outputs of the cipher (generated directly after the key schedul-
ing algorithm) were targets of several distinguishing attacks. E.g. in [17] Mantin and Shamir
found that the second output of RC4 is equal 0 with twice the expected probability. In [5] Paul
and Preneel discovered a bias in the first two output bytes of the RC4 keystream. [13] and [10]
added to those.

Anomalies here can result from the flaws in either the keystream generator or the key setup
algorithm. Given the proper statistical behavior of VMPC-R output in our tests and given the
security features of the key scheduling algorithm discussed in Section 6.2 we do not expect the ci-
pher’s output to behave differently directly after the key setup than it did in our statistical tests.

We additionally verified that fact by separate tests where only the first 8 outputs of the ci-
pher were analysed using the battery described in Section 5.2. We performed the tests both for
the full and for several reduced variants of the key scheduling algorithm, one of them perform-
ing only about 30% of the operations of the full KSA. None of the tests showed any statistical
anomalies in the first outputs of VMPC-R.

5.6 Key/state recovery attacks against VMPC-R

Unlike in case of distinguishing attacks, RC4-like stream ciphers usually show high resistance
to key (or internal state) recovery attacks. For some time the fastest state recovery algorithm
for RC4 was by Mister and Tavares [14]. At CRYPTO 2008 [8] Maximov proposed an improved
attack against RC4 requiring about 224! operations. One difficulty in mounting these attacks
against this family of ciphers is the fact that many secret words of the internal state are used to
produce a single word of output. In RC4 3 words of the internal permutation are used per one
output word. VMPC-R uses 11 words of its permutations to produce one output (4 elements
of P and 7 of S). We roughly estimate that the total number of possible values of the unique
elements of P and S used to produce 50 VMPC-R outputs would be greater than the total
keyspace of a 2048-bit (256-byte) secret key. We don’t expect the key/state recovery attacks to
be a significant threat to the security of the proposed cipher.

Another area where the algorithm’s complexity might strengthen its resistance is attacks derived
from fortuitous states introduced by Fluhrer and McGrew. In [16] they presented RC4 states in
which only X elements of the permutation are involved in the computation of X successive out-
puts. They showed how this fact can be used to determine some parts of the permutation with
nontrivial probability. Paul and Preneel note in [6] that their attack approach has its origins
in the fortuitous states. We believe that VMPC-R using 11 permutation elements per round
controlled by the set of 7 interdependent variables would make introducing fortuitous states
significantly harder, if possible.

We also expect the level of complexity of the round function to be a considerable obstacle in
mounting fault analysis attacks against VMPC-R as opposed to RC4 for which successful fault
attacks were published by Hoch and Shamir in 2004 [11] or Biham, Granboulan and Nguyen in
2005 [12].

6 Key scheduling algorithm of VMPC-R

Table 11. VMPC-R key scheduling algorithm

N, P, S,a,b,c,d,e, f,n: as in Table 4
k : key size; k € {1,2,...,N}
K : key; array of k integers
v : initialization vector size; v € {1,2,...,N}
V' : initialization vector; array of v integers
R=[K*/(6N)] - N (number of rounds)
for N =256 and k € {1,2,...,39} (keys up to 312 bits): R=N
¢ : temporary integer variable
+ denotes addition modulo N
0. a=b=c=d=e=f=n=0
Pli|=S[i=¢ forie{0,1,..,N—1}
KSARound(K, k)
KSARound(V,v)
KSARound(K, k)
SIS[Sle + d)) + 1]

generate N outputs with VMPC-R (Table 4)
Functlon KSARound(M,m) definition:

6.7=0

7. repeat steps 8-18 R times:

U‘F‘P’!\’!—‘

8. a=Pla+ f+ M} + t=(i+1) mod m
9. b=S[b+a+M[z]]+z, i=(i+1) mod m
10. ¢=Plc +b + M[i]] + t=(i+1) mod m
11. d = S[d + ¢+ M[3]] + t=(i+1) mod m
12.e:P[e+d+M[zH+z, i=(i+1) mod m
13. f=8S[f+e+ M[i]] +4 i=(i+1) modm

14. swap P[n]| with P[b]
15. swap S[n] with S[e]
16. swap P[d] with P[f]
17. swap S[a] with S|c]
18. n=n+1

6.1 Some comments on the design

The number of rounds (R). The K SARound function performs R = [k%/(6N)]-N iterations.
This value ensures that each word of a k-word key updates the internal state at least k times. This
follows an intuition that the probability of deriving identical internal states from keys differing
in only one bit or one word should not be different from the probability N!=2 . N~ of deriving
identical internal states from two random keys. For N = 256 and key sizes k € {1,2,...,39}
(keys up to 312 bits): R = N. For N = 256 and key sizes k € {40,41,...,55} (keys from 320 to
440 bits) R = 2N. And so on.

Step 3 of the algorithm. Apart from intensifying the avalanche effect (discussed in Section
6.2) step 3 provides an additional layer of security against key-recovery attacks.

Let’s consider a reduced version without step 3 and assume that a successful state recovery
attack has been accomplished. Since all the data steps 2-5 operate on is known by the adversary
it would be possible to revert these steps and obtain the value of the internal state after step 1.
This would enable to process steps 2-5 for any new message and decrypt it without finding the
actual secret key.

In the full KSA this attack would provide the internal state after step 3. However here the ad-
versary would face a hard problem of reverting step 3 which takes the secret key as a parameter.
As a result of the avalanche effect any new message encrypted with the same key but different
initialization vector would have the internal state uncorrelated with the one the adversary holds
which would give the adversary no advantage in decrypting any new message.

Step 5 of the algorithm. A number of approaches against RC4-like ciphers exploited the
internal state right after the key-setup to mount distinguishing attacks. Some were mentioned
in Section 5.5. One idea to improve the RC4 KSA was to drop several first outputs of the cipher.
Although we believe VMPC-R KSA provides proper statistical behavior, we propose to add this
step as an additional layer - just in case. A measurable benefit it provides is the intensification
of the avalanche effect.

No non-secret values. Our objective was to keep all the state variables secret. Leaving the
value of the counter variable (n in our algorithm) known raises unnecessary risk as the adversary
knows the indices to the arrays used by some parts of the cipher’s round function. In fact several
attacks mentioned in Section 5.5 exploit this situation. Although we don’t believe this to be a
significant security improvement, the effort required to ensure this property (setting variable n
to a secret value in step 4) is very small.

No obvious equivalent keys. To make introducing different keys producing the same internal
state a harder task we use both the value of the word of the key (M[i]) and its index 7 as input.
Both are mixed non-linearly in the a = Pla+ f + M][i]] +i step 8 (and analogously in steps 9-13).

Flexibility. The KSA’s compatibility with a 256-byte array might open more possible alterna-
tive applications than it would be had the key size been limited to the more reasonable 256 or
512 bits. Such arrays containing additional information could be used to influence the internal
state. Apart from the key and the initialization vector, the algorithm can accept any amount
of parameters like additional or session keys, personal information or hardware ID by calling
KSARound with these parameters after step 2 and before step 3.

6.2 Statistical properties of the KSA

We investigated the statistical properties of the KSA in two areas. One was whether the el-
ements of the generated permutations and the variables follow the uniform distribution. The
second was whether permutations and variables generated from different keys are uncorrelated.
We performed all the tests on the KSA only for the full N = 256 version.

To verify the results in the first area we measured the probabilities of occurrences of each
of the possible N values in all the N indices in both permutations (P and S) and in all the 7
variables (a,b,c,d, e, f,n) for different key sizes. All the 132864 measured probabilities stayed
well within acceptable random deviations from the expected 1/N.

The second objective was to verify whether the slightest change in the input key would cause
the proper avalanche effect. We approached this test according to the strict avalanche criterion
(SAC) defined by Webster and Tavares in [19]. The criterion is satisfied when changing a single
input bit changes each output bit with probability 0.5. We measured the number of unchanged
corresponding elements of the permutations and the number of cases of unchanged variables
generated with two (slightly) different keys.

We tested the consequences of a change of a single byte (this included flipping a single bit)
in a pseudorandom key and changing a byte in four different types of non-random keys. We
then repeated the tests with the operation of changing the byte substituted by an operation of
appending a new byte to the key.

To get the worst-case result we chose several scenarios which appeared to hinder the avalanche
effect the most. All the tested keys were of maximum length & = 256 bytes (2048 bits) and
we changed the byte of the key which was the last to be input to the KSA. In any other case
(smaller keys or changing any other byte of the key) the avalanche effect would be more intensive
as the changes of the key would be digested by the algorithm more times or earlier. Additionally
we reduced the number of rounds of the K'SARound function from the original R = 11008 (for
k= N = 256) to only R = 256. We chose the following pairs of keys for the test:

— K;: 256 random bytes; Ko[i] = Kili], i € {0, ...,254}; K5[255] # K;[255]
— K;: 255 random bytes; Ka[i] = Kili], i € {0, ...,254}; K3[255|=random
— Kyli] =i, i € {0,...,255}; Kaoli] = K1[i], i € {0, ..., 254}; K2[255] # K1[255]
i| =1, i €{0,..,254}; Kyli] = Kili], i € {0, ...,254}; K5[255]=random
i| =255 — i, i € {0,...,255}; Ksli] = K1[i], i € {0, ..., 254}; K»[255] # K1[255]
— Kyli] = 255 — i, i € {0, ..., 254}; Ko[i] = Kili], i € {0, ...,254}; K»[255]=random
— j€40,..,255}: Ky[i] = j, i € {0,...,255}; Kali] = Ky[i], i € {0, .., 254}; K3[255] # K1[255]
— j€10,...,255}: Ky[i] = j, i € {0, ..., 254}; Koli] = K1[i], i € {0, ..., 254}; K5[255]=random

K
_ Kl[
K
K

To obtain a significant security margin for the measured avalanche effect we performed the tests
both for the full version of the KSA and for the reduced version using only steps 1 and 5. In
the tests we compared the generated permutations and the 7 variables generated by the KSA
for K1 and K5 and found that in each test the numbers of unchanged elements in the resulting
permutations were well within acceptable random deviations from the expected 1 and that the
probability that any of the 7 variables remained unchanged was not significantly deviated from
the expected 1/N.

Step 1 alone almost provided the proper avalanche effect. The result we recorded for step-1-
only variant was about 1.3 unchanged corresponding elements of the generated permutations

rather than 1 we would expect. For shorter 128-byte (1024-bit) keys the tests for step-1-only
variant produced even better results at around 1.05 identical corresponding permutation ele-
ments (as expected, the shorter key with the other factors unchanged intensified the avalanche
effect).

The KSA limited only to steps 1 and 5 was enough to achieve 1 in all the tests. Steps 2 and
3 approximately double the amount of mixing performed by steps 1 and 5 - intensifying the
avalanche effect and providing the full algorithm with a significant security margin in terms of
the avalanche effect.

7 Test values

Tables 12-14 contain example output values of the algorithms.

Table 12. Test-output of VMPC-R (1)

input:
K; k=9 {11, 22, 33, 144, 155, 166, 233, 244, 255}
Viv=28 {255, 250, 200, 150, 100, 50, 5, 1}
output of KSA:
P index 0 1 2 3 252 253 254 255
P value 97 218 106 125 139 86 36 126
S index 0 1 2 3 252 253 254 255
S value 152 | 143 19 154 92 25 24 157
output of CSPRNG:
output index| 0 1 2 3 254 255 256 257
output value| 49 161 79 69 85 237 96 243
output index| 1000 | 1001 | 10000 | 10001 | 100000 | 100001 | 1000000 | 1000001
output value| 181 184 136 99 67 27 253 231

Table 13. Test-output of VMPC-R (2)

input:
K k=32 {104, 9, 46, 231, 132, 149, 234, 147, 224, 97, 230, 127, 124, 109, 34, 171,
88, 185, 158, 23, 116, 69, 90, 195, 208, 17, 86, 175, 108, 29, 146, 219}
(X=123; repeat 32 times:{X = X-134775813+1; output=X mod 256})
Vv =32 (149, 234, 147, 224, 07, 230, 127, 124, 109, 34, 171, 88, 185, 158, 23, 116,
69, 90, 195, 208, 17, 86, 175, 108, 29, 146, 219, 72, 105, 14, 71, 100}
(X'=132; repeat 32 times:{X = X-134775813+1; output=X mod 256})
output of KSA:

P index 0 1 2 3 252 253 254 255
P value 76 44 167 7 250 147 240 51
S index 0 1 2 3 252 253 254 255
S value 239 59 110 207 98 23 178 227
output of CSPRNG:
output index| 0 1 2 3 254 255 256 257
output value| 219 | 178 157 119 2 155 62 20
output index| 1000 | 1001 | 10000 | 10001 | 100000 | 100001 | 1000000 | 1000001
output value| 3 239 236 81 195 11 186 127

Table 14. Test-output of VMPC-R (3)

input:

K; k = 256

{147, 224, 97, 230, 127, 124, 109, 34, 171, 88, 185, 158, 23, 116, 69, 90,
195, 208, 17, 86, 175, 108, 29, 146, 219, 72, 105, 14, 71, 100, 245, 202
243, 192, 193, 198, 223, 92, 205, 2, 11, 56, 25, 126, 119, 84, 165, 58,

35, 176, 113, 54, 15, 76, 125, 114, 59, 40, 201, 238, 167, 68, 85, 170,

83, 160, 33, 166, 63, 60, 45, 226, 107, 24, 121, 94, 215, 52, 5, 26,

131, 144, 209, 22, 111, 44, 221, 82, 155, 8, 41, 206, 7, 36, 181, 138,

179, 128, 129, 134, 159, 28, 141, 194, 203, 248, 217, 62, 55, 20, 101, 250,
9297, 112, 49, 246, 207, 12, 61, 50, 251, 232, 137, 174, 103, 4, 21, 106

19, 96, 225, 102, 255, 252, 237, 162, 43, 216, 57, 30, 151, 244, 197, 218,
67, 80, 145, 214, 47, 236, 157, 18, 91, 200, 233, 142, 199, 228, 117, 74,
115, 64, 65, 70, 95, 220, 77, 130, 139, 184, 153, 254, 247, 212, 37, 186,
163, 48, 241, 182, 143, 204, 253, 242, 187, 168, 73, 110, 39, 196, 213, 42
211, 32, 161, 38, 191, 188, 173, 98, 235, 152, 249, 222, 87, 180, 133, 154,
3, 16, 81, 150, 239, 172, 93, 210, 27, 136, 169, 78, 135, 164, 53, 10,

51, 0, 1, 6, 31, 156, 13, 66, 75, 120, 89, 190, 183, 148, 229, 122,

99, 240, 177, 118, 79, 140, 189, 178, 123, 104, 9, 46, 231, 132, 149, 234}
(X=234; repeat 256 times:{X = X-134775813+1; output=X mod 256})

Viv=38

{255, 250, 200, 150, 100, 50, 5, 1}

output of KSA:

P index

0 1 2 3 252 253 254 255

P value

10 34 13 239 209 9 154 220

S index

0 1 2 3 252 253 254 255

S value

253 | 106 200 178 75 251 129 209

output of CSPRNG:

output index

0 1 2 3 254 255 256 257

output value

201 85 155 17 187 48 55 198

output index

1000 | 1001 | 10000 | 10001 | 100000 | 100001 | 1000000 | 1000001

output value

110 | 179 189 210 4 15 253 83

8 Conclusions

We applied a simple distant-equalities statistical test to analyse the output of three RC4-like
ciphers: RC4, Spritz and VMPC-R. The results for RC4 were very bad. Spritz revealed a bias
which can be detected for N = 8 after observing about 22'? output words. We confronted these
results with those of VMPC-R. This algorithm was created in a research project aimed at finding
the simplest RC4-like cipher capable of passing the distant-equalities test. En route to the final
version of VMPC-R over 250 RC4-like variants were analysed, some using a single permutation
and some using two permutations along with several integer variables. As a result we proposed
an algorithm which passed the distant-equalities test without revealing any bias in a sample of
2468 outputs - 31 million times larger than that needed to reveal the bias in Spritz (for N = 8).
VMPC-R also passed a number of additional statistical tests and showed no security problems
to the extent we were able to analyse it. We hope that VMPC-R can be considered a worthwhile
candidate to replace RC4.

References

1. Ronald L. Rivest, Jacob C. N. Schuldt: Spritz - a spongy RC4-like stream cipher and hash function.
http://people.csail.mit.edu/rivest /pubs/RS14.pdf. Presented at CRYPTO 2014 Rump Session.

2. Bartosz Zoltak: VMPC One-Way Function and Stream Cipher. Proceedings of FSE 2004, LNCS, vol. 3017,
Springer-Verlag, 2004, pages 210-225.

3. Bartosz Zoltak: VMPC-R Cryptographically Secure Pseudo-Random Number Generator Alternative to RC4.
Cryptology ePrint Archive: Report 2013/768. http://eprint.iacr.org/2013/768.

4. Bartosz Zoltak: Statistical weaknesses in 20 RC4-like algorithms and (probably) the simplest al-
gorithm free from these weaknesses - VMPC-R. Cryptology ePrint Archive: Report 2014/315.
http://eprint.iacr.org/2014/315.

5. Souradyuti Paul, Bart Preneel A New Weakness in the RC4 Keystream Generator and an Approach to
Improve the Security of the Cipher. Proceedings of FSE 2004, LNCS, vol. 3017, Springer-Verlag, 2004, pages
245-259.

6. On the (In)security of Stream Ciphers Based on Arrays and Modular Addition Souradyuti Paul and Bart
Preneel Proceedings of ASTACRYPT 2006, LNCS, vol. 4284, Springer-Verlag, 2006, pages 69-83.

7. Alexander Maximov: Two Linear Distinguishing Attacks on VMPC and RC4A and Weakness of RC4 Family
of Stream Ciphers. Proceedings of FSE 2005, LNCS, vol. 3557, Springer-Verlag, 2005, pages 342-358.

8. Alexander Maximov, Dmitry Khovratovich: New State Recovery Attack on RC4 Proceedings of CRYPTO
2008, LNCS, vol. 5157, Springer-Verlag, 2008, pages 297-316.

9. Itsik Mantin: Predicting and Distinguishing Attacks on RC4 Keystream Generator. Proceedings of Eurocrypt
2005, LNCS vol. 3494 of LNCS, Springer-Verlag, 2005, pages 491-506

10. Yukiyasu Tsunoo, Teruo Saito, Hiroyasu Kubo, Maki Shigeri, Tomoyasu Suzaki, Takeshi Kawabata: The Most
Efficient Distinguishing Attack on VMPC and RC4A ECRYPT Stream Cipher Project, Report 2005 / 037

11. Jonathan J. Hoch, Adi Shamir Fault Analysis of Stream Ciphers. Proceedings of CHES 2004, LNCS, vol.
3156, Springer-Verlag, 2004

12. Eli Biham, Louis Granboulan, Phong Q. Nguyen: Impossible Fault Analysis of RC4 and Differential Fault
Analysis of RC4. Proceedings of FSE 2005, LNCS, vol. 3557, Springer-Verlag, 2005, pages 359-367.

13. Scott Fluhrer, Itsik Mantin, Adi Shamir: Weaknesses in the key scheduling algorithm of RC4. Proceedings of
SAC 2001, LNCS, vol. 2259, Springer-Verlag 2001.

14. Serge Mister, Stafford E. Tavares: Cryptanalysis of RC4-like Ciphers. Proceedings of SAC 1998, LNCS, vol.
1556, Springer-Verlag, 1999.

15. Lars R. Knudsen, Willi Meier, Bart Preneel, Vincent Rijmen, Sven Verdoolaege: Analysis Methods for (Al-
leged) RC4. Proceedings of ASTACRYPT 1998, LNCS, vol. 1514, Springer-Verlag, 1998.

16. Scott R. Fluhrer, David A. McGrew: Statistical Analysis of the Alleged RC4 Keystream Generator. Proceed-
ings of FSE 2000, LNCS, vol. 1978, Springer-Verlag, 2001.

17. Ttsik Mantin, Adi Shamir: A Practical Attack on Broadcast RC4. Proceedings of FSE 2001, LNCS, vol. 2355,
Springer-Verlag, 2002.

18. Jovan Dj. Golic: Linear Statistical Weakness of Alleged RC4 Keystream Generator. Proceedings of EURO-
CRYPT 1997, LNCS, vol. 1233, Springer-Verlag, 1997.

19. A. F. Webster; Stafford E. Tavares. On the design of S-boxes. Proceedings of CRYPTO 1985, LNCS, vol. 218,
Springer-Verlag, 1986.

